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Hierarchical Identity-based Encryption (HIBE)
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Hierarchical Identity-based Encryption (HIBE)

1. KeyGen: The master key generator establishes the master pub-
lic and private keys.

2. Delegate: Through a delegation function, the master key gen-
erator creates a public/private key pair for the sub-key manager.
This gives it the ability to delegate further key pairs, and extract
user private keys at that level.

3. Delegate: The sub-key manager delegates a further public/private
key to the next level of the hierarchy.

4. Extract: The extractor uses their public/private key pair to ex-
tract and share user public/private keys, as in the single-level
IBE scheme.

5. Encrypt/Decrypt: Encryption/decryption works as a regular en-
cryption scheme.



Latte Post-quantum HIBE

• DLP IBE [DLP14] based on the NTRU lattice + Lattice basis
delegation [CHKP10].

• Endorsed by the European Telecommunications Standards In-
stitute (ETSI) [ETS19].

• However, only the Encrypt/Decrypt were implemented and eval-
uated in [ETS19].

Our contributions:
• First complete optimised practical implementation and bench-

marking of Latte.
• Precision analysis of Latte.



Preliminaries

Definition 1 (Lattice). An 𝑛-dimension lattice Λ(B) is the set of
all integer linear combinations of some basis set B, where B =

{b𝑖}𝑛−1
𝑖=0 ⊆ R

𝑛 and b0, . . . , b𝑛−1 are linearly independent: Λ(B) :={∑𝑛−1
𝑖=0 𝑐𝑖b𝑖 : 𝑐𝑖 ∈ Z

}
.

Definition 2 (NTRU Lattice [DLP14]). Let 𝑞 be a positive integer.
Let polynomial ring ℜ := Z[𝑥]/⟨𝑥𝑁 + 1⟩. Let f, g ∈ ℜ and h :=
g/f mod 𝑞. The NTRU lattice associated to h and 𝑞 is ΛNTRU :=
{x ∈ ℜ2 : x · (1, h) = 0 mod 𝑞}.
Definition 3 (Discrete Gaussian). Let 𝜌c,𝜎 (x) := exp

(
− ∥x−c∥2

2𝜎2

)
be

the 𝑛-dimensional (continuous) Gaussian function on R𝑛 with center
c ∈ R𝑛 and standard deviation 𝜎. We denote the discrete Gaussian
distribution on lattice Λ with center c ∈ R𝑛 and standard deviation 𝜎

by DΛ,c,𝜎 (x) := 𝜌c,𝜎 (x)∑
k∈Λ 𝜌c,𝜎 (k) .

Note: Λ is omitted when Λ = Z; c is omitted when c = 0.



NTRU Lattice Trapdoor

• Hardness Assumption (informal): Given a long (in terms of the
Euclidean norm) basis Blong of ΛNTRU, it is hard to find a short
basis Bshort of ΛNTRU (equivalent to finding short lattice vectors).

• Assume f, g are short. For ΛNTRU associated to h = g/f mod
𝑞 ∈ Z𝑁𝑞 , we have [DLP14]:

Blong :=
[
−A(h) I𝑁
𝑞I𝑁 0𝑁

]
,Bshort :=

[
A(g) −A(f)
A(G) −A(F)

]
,

for some sufficiently short (in the same order as f, g) F,G ∈
ℜ such that det

[ g −f
G −F

]
= 𝑞, i.e. fG − gF = 𝑞 mod 𝑥𝑁 + 1,

where A(f) refers to the anti-circulant matrix associated with
polynomial f:

A(f) =
[ f0 f1 ... f𝑁−1
−f𝑁−1 f0 ... f𝑁−2
...

... . . . ...
−f1 −f2 ... f0

]
.



NTRU Lattice Trapdoor (cont.)

Trapdoor function [GPV08]: Given basis B of ΛNTRU, sample short
v←↪ DΛNTRU,c,𝜎.

• The minimal 𝜎 one can sample has: 𝜎𝑚𝑖𝑛 ≈ ∥B̃∥ ∝ ∥B∥, where
B̃ is the Gram-Schmidt orthogonalised basis of B (constant fac-
tors in 𝜎 are omitted).

• For small 𝜎 ≈ ∥B̃short∥:
– Easy to sample given Bshort.

– Hard to sample given Blong (∥B̃long∥ ≫ ∥B̃short∥).
– Easy to verify v is short and v ∈ ΛNTRU.

• Bshort is the trapdoor.
Applications: Falcon signature [PFH+17], DLP IBE [DLP14], Latte
HIBE [ETS19], . . .
We now introduce (our modified) Latte functions.



Latte Function: KeyGen

Essentially the NTRU lattice trapdoor generation.

1. (*) f, g←↪ D𝑁
𝜎0 for 𝜎0 ≈

√︁
𝑞/2𝑁 [DLP14].

2. If ∥B̃short∥ > 𝜎0
√

2𝑁 , goto Step 1.
• Can be done before Step 3 [DLP14].

3. (*) Find sufficiently short F,G such that fG−gF = 𝑞 mod 𝑥𝑁+1.
If unable to find, goto Step 1.

4. h := g/f mod 𝑞. If f is irrevertible, goto Step 1.
Master Public Key: h (essentially Blong).

Master Private Key: S0 :=
[ g −f
G −F

]
(essentially Bshort).



Latte Function: Delegate (cont.)

Idea [CHKP10]: From level ℓ − 1 to ℓ, for Aℓ := 𝐻 (ID1 | | . . . | |IDℓ)
(hash of the chain of identities), given a secret basis Sℓ−1,

1. Basis Extension: Extend Sℓ−1 to a higher-dimensional basis B
containing information of Aℓ, such that ∥B̃∥ = ∥S̃ℓ−1∥.

2. Basis Re-randomization: Sample linearly independent vectors
s𝑖 ←↪ DΛ(B),𝜎ℓ

for some 𝜎ℓ ≈ ∥S̃ℓ−1∥ to hide info of Sℓ−1.
For NTRU basis, both can be achieved together by sampling from
Dc+Λ(Sℓ−1),𝜎ℓ

for some coset c [ETS19].

e.g. From S0 to S1, given A1 ∈ Z𝑁𝑞 :

1. For 𝑖 := 0, 1:
(a) (*) s𝑖,2 ←↪ D𝑁

𝜎1.

(b) (*) (s𝑖,0, s𝑖,1) ←↪ Dc+Λ(S0),𝜎1, for c := −s𝑖,2 · A1 mod 𝑞.

(c) If ∥s𝑖,0, s𝑖,1, s𝑖,2∥ > 𝜎1
√

3𝑁 , goto Step (a).
2. (*) Find sufficiently short (s2,0, s2,1, s2,2) such that det(S1) = 𝑞

for S1 := {s𝑖, 𝑗}. If unable to find, goto Step 1.



Latte Function: Delegate (cont.)

Because Λ(S0) = {x ∈ ℜ2 : x · (1, h) = 0 mod 𝑞}
s𝑖,0 + s𝑖,1 · h = −s𝑖,2 · A1 =⇒ s𝑖,0 + s𝑖,1 · h + s𝑖,2 · A1 = 0 mod 𝑞,

=⇒ (s𝑖,0, s𝑖,1, s𝑖,2) is a lattice vector in a ModNTRU lattice [CPS+20]:

Λ(S1) := {x ∈ ℜ3 : x · (1, h,A1) = 0 mod 𝑞}.

Public (long) basis:

[
−A(h) I𝑁
𝑞I𝑁 0𝑁

]
→

[−A(A1) 0𝑁 I𝑁
−A(h) I𝑁 0𝑁

𝑞I𝑁 0𝑁 0𝑁

]
Private (short) basis:

[
A(g) −A(f)
A(G) −A(F)

]
→

[A(s0,0) A(s0,1) A(s0,2)
A(s1,0) A(s1,1) A(s1,2)
A(s2,0) A(s2,1) A(s2,2)

]



Latte Function: Extract

From level ℓ−1 to a user at level ℓ, given A′
ℓ

:= 𝐻𝐸 (ID1 | | . . . | |IDℓ) ∈
Z𝑁𝑞 (a different hash function than Aℓ used by the Delegate):

• (*) (t0, t1, . . . , tℓ) ←↪ Dc+Λ(Sℓ−1),𝜎ℓ
, for c := A′

ℓ
and 𝜎ℓ ≈ ∥S̃ℓ−1∥,

using a seed derived from ID1 | | . . . | |IDℓ.

t0 + t1 · h + t2 · A1 + · · · + tℓ · Aℓ−1 = A′ℓ mod 𝑞.

• User private key: (t1, . . . , tℓ).



Latte Function: Encrypt (simplified)

Ring Learning with Errors (RLWE) encryption [LPR10].

For message encoded to m ∈ {0, (𝑞 − 1)/2}𝑁 , the ciphertext:

(*)


Cℎ

C1
...

Cℓ−1
Cℓ


:=


h

A1
...

Aℓ−1
A′
ℓ


· e +


eℎ
e1
...

eℓ−1
eℓ


+


0
0
...
0
m


mod 𝑞,

where e, eℎ, e1, . . . , eℓ are sampled from a binomial distribution with
center 0 and standard deviation 2.



Latte Function: Decrypt (simplified)

(*)V : = Cℓ − Cℎ · t1 − C1 · t2 − · · · − Cℓ−1 · tℓ mod 𝑞

= A′ℓ · e + eℓ +m − (h · e + eℎ) · t1 − (A1 · e + e1) · t2 − · · ·
= eℓ +m − t1 · eℎ − t2 · e1 − · · · − tℓ · eℓ−1 + t0 · e.

The last equation holds because t0 + t1 ·h+ t2 ·A1 + · · · + tℓ ·Aℓ−1 =
A′
ℓ

mod 𝑞 by Extract.

• Round coefficients of V to the nearest integer in {0, (𝑞 − 1)/2}.
• Parameters are chosen so the error terms are small (with coef-

ficients < 𝑞/4), i.e. the decryption failure rate is negligible.
Acutal Latte is a Key Encapsulation Mechanism (KEM).



Implementation

How to efficiently implement the steps with blue asterisk?
• Discrete Gaussian sampling:

– D𝜎 (KeyGen, Delegate).
– Dc+Λ(S𝑖),𝜎 (Delegate, Extract).

• Find short (Mod)NTRU solution (i.e. last row of S𝑖) for det(S𝑖) =
𝑞 (KeyGen, Delegate).

• Polynomial ring arithmetic in ℜ𝑞 := Z𝑞 [𝑥]/⟨𝑥𝑁 + 1⟩ (Encrypt,
Decrypt).

Some previous works have been done under different scenarios.



Polynomial Ring Arithmetic

• Number Theoretic Transform (NTT):
– Essentially the Fast Fourier Transform (FFT) over Z𝑞 with

quasilinear time complexity.
– For a, b ∈ ℜ𝑞 with power-of-2 𝑁 and prime 𝑞 ≡ 1 (mod 2𝑁):

* NTT(a) = a(𝜁 𝑖) mod 𝑞 for 𝑖 ∈ {0, . . . , 𝑁 − 1}, where
𝜁 is the 2𝑁-th root of unity of Z𝑞; NTT−1(â) = 1/𝑁 ·
â(𝜁−𝑖) mod 𝑞.

* a ± b = NTT−1(NTT(a) ± NTT(b)).
* a · b = NTT−1(NTT(a) ◦ NTT(b)), where ◦ is the point-

wise multiplication mod 𝑞.
• We adopt the Plantard’s modular reduction [Pla21].
• We keep polynomials in their NTT form whenever possible to

reduce the number of NTTs in Encrypt/Decrypt.
– Master public key h, Identities A𝑖, User private key t𝑖, Ci-

phertext C𝑖.



Find Short NTRU Solution

NTRUSolve [PP19] in Falcon: To find F,G such that fG − gF = 𝑞,
use tower of rings:

1. Use field norm recursively to map f, g to Z.
2. Perform xgcd over Z to find F′,G′ ∈ Z.
3. Lift F′,G′ back to F,G ∈ ℜ with length reduction ((F,G) − k ·
(f, g) for some k ∈ ℜ).



Find Short ModNTRU Solution

ModFalcon [CPS+20]: Use Schur complement.

e.g. for S1 =

[ s0,0 s0,1 s0,2
s1,0 s1,1 s1,2
s2,0 s2,1 s2,2

]
=

[
vT M
G F′

]
, if M is invertible,

det(S1) = det(G − F′M−1vT) det(M)
= (G − F′M−1vT) det(M)
= G det(M) − F′adj(M)vT.

Choose F′ := (F, 0).
det(S1) = det(M) ·G − F · u0 = 𝑞,

where u0 is the first coordinate of adj(M) · vT.
1. Use NTRUSolve to find F,G, with input det(M), u0.

• Problem: Coefficient size of F,G are in the same order of
input det(M), u0, i.e. in the order of 𝑞2.

2. Use Cramer’s rule [ETS19] for length reduction.



Discrete Gaussian Sampling for D𝜎

We use our FACCT sampler [ZSS20b].
• Essentially a constant-time variant of the BLISS sampler [DDLL13].

– Rejection sampling over a distribution close to D𝜎.
– The rejection step needs to compute exp(𝑥).

• Our FACCT sampler developed a fast, compact, and constant-
time polynomial approximation technique to compute exp(𝑥)
with sufficient precision.

– Adopted by the Falcon signature [PRR19].



Discrete Gaussian Sampling for Dc+Λ(S𝑖),𝜎

Equivalent to c − v for v←↪ DΛ(S𝑖),c,𝜎 [GPV08].
Definition 4 (Gram-Schmidt Orthogonal Decomposition [DP16]). Let
B ∈ R𝑛×𝑛 be a full-rank matrix. There exists a Gram-Schmidt Or-
thogonal (GSO) Decomposition B = L · B̃, where L is unit lower
triangular and rows B̃𝑖 of B̃ are pairwise orthogonal.
Given input t ∈ R𝑛, to sample zB←↪ DΛ(B),tB,𝜎 (variant of [GPV08]
in [DP16]):
For 𝑗 = 𝑛 − 1, . . . , 0:

1. t′
𝑗

:= t 𝑗 +
∑

𝑖> 𝑗 (t𝑖 − z𝑖)L𝑖, 𝑗 .

2. z 𝑗 ←↪ Dt′
𝑗
,𝜎𝑗

with 𝜎𝑗 := 𝜎/∥B̃ 𝑗 ∥.

Let t := c · S−1
𝑖

. Then (t − z)S𝑖 follows Dc+Λ(S𝑖),𝜎.
• Quadratic time complexity.



Fast Fourier Sampling

Definition 5 (LDL∗ Decomposition [DP16]). Let the full-rank Gram
matrix G = BB∗ where B ∈ R𝑛×𝑛. There exists an LDL∗ Decompo-
sition G = LDL∗, where L is a lower triangular matrix with 1 on its
diagonal and D is a diagonal matrix.

• For B = L · B̃, L · (B̃B̃∗) · L∗ is the LDL∗ decomposition of
G = BB∗.

• The diagonal of D is ∥B̃𝑖∥2.

For B ∈ ℜ𝑑×𝑑, the LDL∗ decomposition can exploit the tower of
rings [DP16].

• Can work in the Fourier domain.
• The decomposition results form a tree structure, with leaves val-

ues being (permuted) ∥B̃𝑖∥2.
• Quasilinear time complexity.



Fast Fourier Sampling (cont.)

• Similarly, Falcon signature [PFH+17] shows the sampling algo-
rithm can also exploit the tower of rings in the Fourier domain
with quasilinear time complexity.

• For the Fast Fourier LDL∗ tree of (Mod)NTRU bases in Latte,
we prove:

– D only contains real numbers.
– Values in D can be computed from the D values of its parent

node.
• D can be solely computed via real number arithmetic (i.e. with-

out complex number arithmetic).



Discrete Gaussian Sampling for D𝑐,𝜎

Problem: For S1, (S̃1)2𝑁 is much shorter than (S̃1)0, (S̃1)𝑁 .
• The sampler for D𝑐,𝜎 [HPRR20] used by Falcon has rejection

rate proportional to 𝜎𝑚𝑎𝑥/𝜎𝑚𝑖𝑛.

• Because 𝜎𝑗 = 𝜎/∥(S̃1) 𝑗 ∥, the gap between 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 is
large for S1.

– Not a problem for S0 (and Falcon), because 𝜎0 in KeyGen
is chosen so ∥(S̃0)0∥, ∥(S̃0)𝑁 ∥ are close [DLP14].

We use a variant [SZJ+21] of our COSAC sampler [ZSS20a].
• Rejection sampling on a center-shifted rounded Gaussian dis-

tribution (i.e. round sample from a continuous Gaussian distri-
bution to the nearest integer).



Latte Security vs Precision Analysis

How to choose the precision of Discrete Gaussian sampling arith-
metic?

• Want to minimize precision for efficiency
• Q: How low can we reduce precision while still maintaining se-

curity?
• A: Analyze concrete provable security reduction success prob-

ability degradation with precision. Choose precision to lose
≤ 𝐿 ≈ 2 bits of security (wrt infinite precision security).

• We use:
– RD-Based Security Reduction: Rényi Divergence analy-

sis techniques [BLRL+18, Pre17] for Latte security degrada-
tion wrt arithmetic error bounds.

– Statistical model for Gaussian sampler arithmetic er-
rors: estimating Gaussian sampler arithmetic error bounds
resulting from precision roundoff.



Latte Security vs Precision Analysis

RD-Based Security Reduction: We use RD-based arguments to
relate bit security loss 𝐿 of REAL (finite precision) LATTE with

• Precision 𝑝𝐷 of discrete Z-sampler at leaves of ffSampling.
• Precision 𝑝 𝑓 of fp arithmetic in ffSampling.

wrt to security of IDEAL (infinite precision) LATTE with 𝑝𝐷, 𝑝 𝑓 = ∞.
Our bound on 𝐿 depends on:

• number 𝑄max of A’s delegate/extract queries
• RD of precision-𝑝𝐷 discrete Z-sampler from ideal (infinite pre-

cision) distribution.
– known dependence on 𝑝𝐷 from COSAC sampler RD anal-

ysis [ZSS20a].

• precision-𝑝 𝑓 fp arithmetic errors bounds Δ𝑈

𝑡 (𝑖)
, 𝛿𝑈

𝜎(𝑖)
for leaf Z-

sampler centre and std dev parameters.

– Question: What is the relation of Δ𝑈

𝑡 (𝑖)
, 𝛿𝑈

𝜎(𝑖)
to 𝑝 𝑓 ?



Latte Security vs Precision Analysis

Statistical model for Gaussian sampler arithmetic errors:
To get tight bounds on Δ𝑈

𝑡 (𝑖)
, 𝛿𝑈

𝜎(𝑖)
in terms of 𝑝 𝑓 we introduce a

heuristic statistical (numerical) model:
• model the finite precision fp errors throughout the algorithm as

independent random additive error with a Gaussian distribution.
• At each fp arithmetic operation, given the mean and standard

deviation of the Gaussian-distributed inputs, propagate them
through the fp operation to compute the mean and standard
deviation parameters of the output.

Using this model, we compute estimates for fp arithmetic errors
bounds (tail bounds on the Gaussian distributed errors from the sta-
tistical model) for Δ𝑈

𝑡 (𝑖)
, 𝛿𝑈

𝜎(𝑖)
.



Latte Security vs Precision Analysis

Security vs Precision Results for Latte:
We computed the max. no. of Latte attack delegate/extact queries
𝑄𝑚𝑎𝑥 = min(𝑄𝐵

𝑚𝑎𝑥, 𝑄
𝐶
𝑚𝑎𝑥) to keep the security loss 𝐿 ≤ 2 bits due

to finite precision 𝑝𝐷 and 𝑝 𝑓 𝑝.

Conclusion:
• Standard double precision fp (𝑝 𝑓 𝑝 = 53 bit) sufficient for Latte-1

and Latte-2 up to 242 delegate/extract queries.

• 113-bit fp precision sufficient for Latte-3/Latte-4 up to 266 dele-
gate/extract queries.



Our Latte Parameters

Set Sec. 𝑁 log2 𝑞
𝜎ℓ

ℓ = 0 ℓ = 1 ℓ = 2
LATTE-1 128 1024 24 106.2 5513.3 -
LATTE-2 256 2048 25 106.2 7900.2 -
LATTE-3 80 1024 36 6777.6 351968.4 22559988.0
LATTE-4 160 2048 38 9583.7 713167. 64997288.2

• LATTE-1 and LATTE-2 have 1 level (essentially an IBE).
• LATTE-3 and LATTE-4 have 2 levels.



Our Latte Benchmark Results

Speed (op/s):

Set KeyGen ℓ = 1 ℓ = 2
Ext Enc Dec Del Ext Enc Dec

LATTE-1 9.4 1361.8 23061.4 18041.3 - - - -
LATTE-2 3.3 636.9 10690.7 8456.4 - - - -
LATTE-3 5.7 36.3 14331.1 12134.7 2.4 20.0 11429.8 9713.4
LATTE-4 1.7 17.1 6846.6 5785.6 0.8 9.4 5450.2 4642.1

• Delegate takes ≈ 1 second, significantly faster than the order of
minutes estimated in [ETS19].

• Encrypt/Decrypt are very fast (up to 9.7x faster than [ETS19]).
Key/Ciphertext Sizes (bytes):

Set Master
Public Key

Master
Private Key

User
Private Key Ciphertext Delegated

Public Key
Delegated
Private Key

ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2
LATTE-1 3072 12288 3072 - 6176 - - -
LATTE-2 6400 25600 6400 - 12832 - - -
LATTE-3 4608 18432 4608 9216 9248 13856 9216 41472
LATTE-4 9728 38912 9728 19456 19488 29216 19456 87552
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