CSIRO

Australia’s National Science Agency

High Throughput Lattice-based Signatures on
GPUs: Comparing Falcon and Mitaka

Wai-Kong Lee, Raymond K. Zhao, Ron Steinfeld, Amin Sakzad, Seong Oun Hwang

. 7ot PY MONASH
Ge!-d;nlﬂligrsity Uﬂ|ver8|ty UT> R

Post-quantum Cryptography (PQC)

* Classical Public Key Cryptography (PKC) in use e.g. ECDH can be
broken by quantum algorithms.

* Harvest now, decrypt later attack.

* National Institute of Standards and Technology (NIST) has
standardized Post-Quantum Cryptography (PQC) algorithms in 2022.
e ML-KEM, ML-DSA, SLH-DSA, Falcon, ...

 Existing applications using PKC e.g. web security needs to be
guantum-safe.

* May need to develop new protocols.
* Fveryone needs to migrate to quantum-safe!

PQC Research in CSIRO’s Data61

* Our people:

4

Dongxi Liu Raymond K. Zhao Jiafan Wang

PQC Research in CSIRO’s Data61

* Our strength: We have both cryptography and
cryptographic engineering expertise for PQC.

* We develop solutions that meet different requirements.
* We develop prototype implementations for new PQC designs.

* We are working with industrial partners to develop and implement
new PQC migration technologies.

-t

Background

* Cloud server needs to handle thousands of digital signatures per
second at peak time.

* e.g. Alibaba: 583,000 transactions/sec = 583,000 signings, 1,166,000
verifications per second.

* With only CPU, challenging even for powerful servers.

* Cloud starts to equip with Graphics Processing Units (GPU) thanks
to Al.

-t

Falcon and Mitaka Sighature

* Digital signatures in use are not quantum-safe. Need to migrate to
PQC.
* Falcon is one of the NIST standardized PQC digital signatures.
* Mitaka is a later more parallelizable variant of Falcon.
— Techniques adopted by the SOLMAE signature in Korean PQC competition.

* Question: How to efficiently implement Falcon/Mitaka on GPU?

* We develop the first GPU implementation for Falcon and Mitaka.

* Collaboration between Gachon University, CSIRO’s Data61, and Monash
University.

* Published in IEEE Transactions on Parallel and Distributed Systems.

-t

Problem 1: Recursive vs Iterative ffSampling

ffSampling is the most time-
consuming operation in Falcon
signature generation.

* The sampling process traverse
through a Falcon tree.

* It was first implemented by the
authors in a recursive manner. 11 5 5 3

* Not parallelizable due to | |
dependency between Ieaves Fig. 2: A Falcon tree of height 3. Labels on the tree nodes

indicate the order in which the tree nodes are traversed by

° Ve ry SlOW on a GPU due to extenSIVe Z}tlf).ffSampling algorithm (where 1 is visited first, 2 second,
stack management and lack of

1,7,13

8,10,12 2,46

efficient APl support.

Solution 1: Proposed lterative ffSampling

* Existing GPU implements S{top]

recursive function call by
dynamic parallelism, which

s[0] | S[1] | s[21 | s3]

launches kernel within a kernel. Fig. 3: A stack array S. Each array element contains a stack
This introduces significant frame.
overhead if there are many
levels of recursion. « Stack can be managed by the

* Proposed an iterative version of programmer in a simpler way
ffSampling to replace the (Fig. 3). Only a 1-D array is

orlglnal recursive version.

* Do not rely on the recursive API
(dynamic parallelism).

required.

Solution 1: Micro-benchmarking

i We com pa rEd the TABLE 8: Throughput of Falcon-512 signature generation
performance of recursive and

using recursive and iterative ffSampling

Falcon-512 alcon-512
iterative ffSampling. R (T Ca
. . RTX 3080 | 2439 6717.51 537.07
* The proposed iterative ketesss | 0|00 evrss oot 12667
. . A100 4025 4070.56 \
version is 11.44x — 14.39x faster

than the original recursive version.

Problem 2: Parallel Granularity

* Previous works adopt either coarse- or fine-grained parallelism.

* Coarse-grain:
1 thread 1 signature/KEM.
 Serial implementation, does not fully exploit GPU resources.
* Easy to implement.
* Fine-grain:
* Many threads compute 1 signature/KEM.
 Parallel implementation, better use of GPU resources.
* More work required to implement this.

Solution 2: Proposed Mixed Parallel Granularity

* Proposed a mixed parallel

granularity that combines the T][] oo HH-
best of both world. xcention 4y | [4y || 47y =
IRIIIRINEIIR Yy
* Many parallel blocks, each block R Y
CompUtes 1 Signature' Ew:mm _;gj. 0 Sigi 1 Sigi 2 Sigi K-1
o W|th|n eaCh blOCk, pa ra”ehze 1 Fig. 1: GPU-based signature server: parallelizing the imple-

mentation of signatures on a GPU.

signhature with many threads.

* For some parts not possible to
parallelize, we implement it
serially.

-t

Problem 3: Slow Mitaka Verification

 Falcon verification is fast because it is parallelizable and operates on
integer arithmetic.

* However, the original Mitaka verification was implemented using
double precision floating point arithmetic. It is slower than the
Falcon verification.

* Mitaka verification shares many similarity with Falcon, hence it is
also possible to work on the integer domain.

* In this paper, we evaluate Mitaka verification in both floating point
and integer domain.

-t

Solution 3: Proposed Mitaka Implementation on the

Integer Domain

* The FFT/iFFT is converted to
NTT/iNTT.

* Integer arithmetic uses 32-bit
operations, which is natively
supported by GPU platforms.

* Double precision floating point
arithmetic (FP64) operates on
64-bit, not natively supported
by GPU platforms, thus slow.

TABLE 7: Throughput of Mitaka-512 verification on floatin,
point and integer units

Mitaka-512 Mitaka-512
GPU FP6d INT32
Op/s ms Op/s ms
RTX 3080 695931 23.54 | 2007649 8.16
V100 843035 19.44 | 2130201 7.69
T4 331619 4941 918191 17.84
A100 1421046 11.53 | 3790838 4.32

K=16384

On an A100 GPU, the integer version
(INT32) of Mitaka verification is 2.67x
faster than the floating point version
(FP64).

This result is also 1.39x faster than
Falcon- 512 verification on the same
GPU device. @

Other Techniques:

e Mitaka signature generates random samples in on-demain basis.
This is slow for a GPU implementation. We proposed a technique to
generate random samples in batch.

* Polynomial arithmetic, FFT/iFFT and NTT/iNTT are embarrassingly
parallel algorithms, which fit into GPU implementation easily.

* Hash operations are parallelized by 25 threads, following the fine-
grained implementation of SHA3 proposed by Lee et al. [44]. This is
also the fastest SHA3 fine-grained implementation on GPUs to date.

L

Experimental Platforms

* Experiments were carried out on two
separate platforms.

e Four state-of-the-art NVIDIA GPU
architectures: Volta (V100, 2017),
Turing (T4, 2018) and Ampere (A100,
2020; RTX 3080, 2021) were used.

K GPU blocks are launched to
generate/verify K signatures in
parallel.

* Within each block, multiple threads
are used to compute one signature.

TABLE 4: Experimental Platforms Used

| Platform-1 | Platform-2
Desktop Cloud
Workstation System

GPU RTX 3080 V100 T4 A100
CUDA Cores 8704 5120 2560 8192
Architecture Ampere Volta Turing Ampere
Compute capability 8.6 7.0 7.5 8.0
Clock (GHz) 1.710 1.246 0.585 1.410
Memory bandwidth
(GB/s) 760 900 300 1935
No. Streaming
Multiprocessor (SM) 68 80 9 64
Compiler CUDA 11 CUDA 11
CPU Intel 19-10900K Intel Xeon Gold 6150
Clock 3.70 GHz 22 GHz

Signature Throughput on a A100 GPU

Throughput of Signature Generation

* On a A100 GPU, Mitaka-512 —
signature generation is 2.76x § e —
faster than Falcon-512. 5 120] T e Sl

H . 8 L #- - Mitaka-1024-Sign

* Falcon is hard to parallelize : ™ e

. .] 80
due to the serial ffSampling % -
algorithm. g ool T e

* Mitaka can be fully g owf
parallelized, thus achieving N
much higher throughput Batch Size (K

(b) A100

than Falcon.

Verification Throughput on a A100 GPU

* On the other hand, Falcon-512
verification is 1.91x faster than
Mitaka-512.

* Mainly because Falcon uses
integer arithmetic in verification,
but Mitaka uses double
precision floating point.

e Refer to slide no. 13, Mitaka
verification is faster than Falcon
when both are using integer
arithmetic.

2,800 |-

.20 1,200 +

Thousands signatures per second

Throughput of Signature Verification

2,400 +

T T

---- Falcon-512-Ver
--£3+- Falcon-1024-Ver

2,000 | _ . Mitaka-512-Ver

#- - Mitaka-1024-Ver

1,600 -

800 |-

400
d .- N :l":: - ”

T

-
i
/

o7 L L
20 ,;w\ %
\ \

(<))

N ™
o™
Batch Size (K)
(b) A100

—

212 -

9l4

-t

Comparison with Existing Works

e Our Falcon-512 implementation
on RTX 3080 is 7.78x and 52.43x
faster than the AVX2
implementation for sign and
verify, respectively.

* Our GPU implementation is
9.15x (sign)/14.45x% (verify)
faster than FP64 Mitaka-512
(reference implementation from
the authors).

TABLE 6: Comparing with CPU and state-of-the-art imple

mentations.
Fal-512 Mit-512 | Fal-1024 Mit-1024
CPU, Op/s
Sign | 3167 - 2850
AVXZ | Verify | 18230 - 18319
— Sign | 3587 8087 | 2045 4146
Verify | 36491 48153 | 17694 20565
GPU, Op/s
This work T | Sign | 27908 74010 | 15239 34025
(RTX 3080) | Verify | 1913380 695931 | 1217317 309841
XMSS_10 [26] | Sign 225396/ 1869137
(SHA-256) | Verify 730450/6057392
— Sign 717306/580676°
Dilithium [26] | v gy 1960182/1586814
SPHINCS [14] | Sign 5152/17516"
(ChaCha) | Verify 106390/361726*

! The highest throughput with K = 16384.

2 Performance scaled by the number of cores, 10496/8704. RTX
3090 was used in [46].

3 Performance scaled by 10752/8704 RTX 3090 Ti was used in [26].

* Performance scaled by 2560/8704. GTX 1080 was used in [14].

Conclusions

Our work pioneered the attempt to implement Falcon and Mitaka on
various state-of-the-art GPU platforms.

The proposed implementation techniques allows Falcon and Mitaka to
achieve very high signature and verification throughput.

Can help in accelerating the adoption of NIST standard in applications that
require high throughput signatures.

The proposed iterative ffSampling can also be adopted to hardware
implementation like FPGA.

Our Mitaka GPU implementation could be adopted to implement SOLMAE
on GPU.

L

Thank you

CSIRO’s Data61
Raymond Zhao
Postdoctoral Fellow

Raymond.zhao@data61.csiro.au

Australia’s National Science Agency

