
Australia’s National Science Agency

High Throughput Lattice-based Signatures on
GPUs: Comparing Falcon and Mitaka

Wai-Kong Lee, Raymond K. Zhao, Ron Steinfeld, Amin Sakzad, Seong Oun Hwang

• Classical Public Key Cryptography (PKC) in use e.g. ECDH can be
broken by quantum algorithms.
• Harvest now, decrypt later attack.
• National Institute of Standards and Technology (NIST) has

standardized Post-Quantum Cryptography (PQC) algorithms in 2022.
• ML-KEM, ML-DSA, SLH-DSA, Falcon, …
• Existing applications using PKC e.g. web security needs to be

quantum-safe.
• May need to develop new protocols.
• Everyone needs to migrate to quantum-safe!

Post-quantum Cryptography (PQC)

• Our people:

 Dongxi Liu Raymond K. Zhao Jiafan Wang

PQC Research in CSIRO’s Data61

• Our strength: We have both cryptography and
cryptographic engineering expertise for PQC.
•We develop solutions that meet different requirements.
•We develop prototype implementations for new PQC designs.
•We are working with industrial partners to develop and implement

new PQC migration technologies.

PQC Research in CSIRO’s Data61

• Cloud server needs to handle thousands of digital signatures per
second at peak time.
• e.g. Alibaba: 583,000 transactions/sec à 583,000 signings, 1,166,000

verifications per second.
• With only CPU, challenging even for powerful servers.
• Cloud starts to equip with Graphics Processing Units (GPU) thanks

to AI.

Background

• Digital signatures in use are not quantum-safe. Need to migrate to
PQC.
• Falcon is one of the NIST standardized PQC digital signatures.
• Mitaka is a later more parallelizable variant of Falcon.

– Techniques adopted by the SOLMAE signature in Korean PQC competition.
• Question: How to efficiently implement Falcon/Mitaka on GPU?
• We develop the first GPU implementation for Falcon and Mitaka.
• Collaboration between Gachon University, CSIRO’s Data61, and Monash

University.
• Published in IEEE Transactions on Parallel and Distributed Systems.

Falcon and Mitaka Signature

Problem 1: Recursive vs Iterative ffSampling

• ffSampling is the most time-
consuming operation in Falcon
signature generation.

• The sampling process traverse
through a Falcon tree.

• It was first implemented by the
authors in a recursive manner.

• Not parallelizable due to
dependency between leaves.

• Very slow on a GPU due to extensive
stack management and lack of
efficient API support.

Solution 1: Proposed Iterative ffSampling

• Existing GPU implements
recursive function call by
dynamic parallelism, which
launches kernel within a kernel.
This introduces significant
overhead if there are many
levels of recursion.

• Proposed an iterative version of
ffSampling to replace the
original recursive version.

• Do not rely on the recursive API
(dynamic parallelism).

• Stack can be managed by the
programmer in a simpler way
(Fig. 3). Only a 1-D array is
required.

Solution 1: Micro-benchmarking

• We compared the
performance of recursive and
iterative ffSampling.
• The proposed iterative

version is 11.44× – 14.39× faster
than the original recursive version.

Problem 2: Parallel Granularity
• Previous works adopt either coarse- or fine-grained parallelism.
• Coarse-grain:
• 1 thread 1 signature/KEM.
• Serial implementation, does not fully exploit GPU resources.
• Easy to implement.
• Fine-grain:
• Many threads compute 1 signature/KEM.
• Parallel implementation, better use of GPU resources.
• More work required to implement this.

Solution 2: Proposed Mixed Parallel Granularity

• Proposed a mixed parallel
granularity that combines the
best of both world.

• Many parallel blocks, each block
computes 1 signature.

• Within each block, parallelize 1
signature with many threads.

• For some parts not possible to
parallelize, we implement it
serially.

Problem 3: Slow Mitaka Verification
• Falcon verification is fast because it is parallelizable and operates on

integer arithmetic.
• However, the original Mitaka verification was implemented using

double precision floating point arithmetic. It is slower than the
Falcon verification.
• Mitaka verification shares many similarity with Falcon, hence it is

also possible to work on the integer domain.
• In this paper, we evaluate Mitaka verification in both floating point

and integer domain.

Solution 3: Proposed Mitaka Implementation on the
Integer Domain
• The FFT/iFFT is converted to

NTT/iNTT.
• Integer arithmetic uses 32-bit

operations, which is natively
supported by GPU platforms.
• Double precision floating point

arithmetic (FP64) operates on
64-bit, not natively supported
by GPU platforms, thus slow.

• On an A100 GPU, the integer version
(INT32) of Mitaka verification is 2.67×
faster than the floating point version
(FP64).

• This result is also 1.39× faster than
Falcon- 512 verification on the same
GPU device.

Other Techniques:
• Mitaka signature generates random samples in on-demain basis.

This is slow for a GPU implementation. We proposed a technique to
generate random samples in batch.
• Polynomial arithmetic, FFT/iFFT and NTT/iNTT are embarrassingly

parallel algorithms, which fit into GPU implementation easily.
• Hash operations are parallelized by 25 threads, following the fine-

grained implementation of SHA3 proposed by Lee et al. [44]. This is
also the fastest SHA3 fine-grained implementation on GPUs to date.

Experimental Platforms

• Experiments were carried out on two
separate platforms.

• Four state-of-the-art NVIDIA GPU
architectures: Volta (V100, 2017),
Turing (T4, 2018) and Ampere (A100,
2020; RTX 3080, 2021) were used.

• K GPU blocks are launched to
generate/verify K signatures in
parallel.

• Within each block, multiple threads
are used to compute one signature.

Signature Throughput on a A100 GPU

• On a A100 GPU, Mitaka-512
signature generation is 2.76×
faster than Falcon-512.
• Falcon is hard to parallelize

due to the serial ffSampling
algorithm.
• Mitaka can be fully

parallelized, thus achieving
much higher throughput
than Falcon.

Verification Throughput on a A100 GPU

• On the other hand, Falcon-512
verification is 1.91× faster than
Mitaka-512.

• Mainly because Falcon uses
integer arithmetic in verification,
but Mitaka uses double
precision floating point.

• Refer to slide no. 13, Mitaka
verification is faster than Falcon
when both are using integer
arithmetic.

Comparison with Existing Works

• Our Falcon-512 implementation
on RTX 3080 is 7.78× and 52.43×
faster than the AVX2
implementation for sign and
verify, respectively.

• Our GPU implementation is
9.15× (sign)/14.45× (verify)
faster than FP64 Mitaka-512
(reference implementation from
the authors).

Conclusions
• Our work pioneered the attempt to implement Falcon and Mitaka on

various state-of-the-art GPU platforms.
• The proposed implementation techniques allows Falcon and Mitaka to

achieve very high signature and verification throughput.
• Can help in accelerating the adoption of NIST standard in applications that

require high throughput signatures.
• The proposed iterative ffSampling can also be adopted to hardware

implementation like FPGA.
• Our Mitaka GPU implementation could be adopted to implement SOLMAE

on GPU.

Australia’s National Science Agency

CSIRO’s Data61
Raymond Zhao
Postdoctoral Fellow

Raymond.zhao@data61.csiro.au

Thank you

