
Scalable and Efficient Hybrid QKD with

Post-quantum Authentications

Raymond K. Zhao, Dongxi Liu, and Josef Pieprzyk

CSIRO’s Data61
www.csiro.au

FOR FURTHER INFORMATION
Raymond K. Zhao

t: +61 481770413

e: raymond.zhao@data61.csiro.au

w: www.csiro.au

REFERENCES

Pedone et al. (2021). Toward a

Complete Software Stack to

Integrate Quantum Key Distribution

in a Cloud Environment. IEEE

Access, 9, 115270–115291.

RESOURCES

https://gitlab.com/raykzhao/qkd-sim

Introduction
It is commonly believed that using post-quantum signatures as the QKD authentication method will severely degrade the QKD

performance due to its high computational and communication costs. We evaluate the QKD key rate in a QKD simulator with

3 post-quantum signatures standardised by the NIST: Dilithium, Falcon, and SPHINCS+. We show that the key rate with either

Dilithium or Falcon is close to the key rate with AES-GCM (PSK) on 128-bit security for the authentication in such scenarios.

Post-quantum Signatures
Performance of the reference C implementations of Dilithium,

Falcon, and SPHINCS+ (128-bit security, without AVX2) mea-

sured on Intel Xeon E5-2660 v2 at 2.2 GHz is summarised in

Table 1.

Scheme Sign Verify Public Key Signature

Dilithium2 0.84 0.20 1312 2420

Falcon-512 0.54 0.06 897 666

SPHINCS+

-SHAKE-128f
200.1 12.8 32 17088

Table 1: Sign/Verify Speed (ms) at 2.2 GHz and Public

Key/Signature Sizes (Bytes) of Post-quantum Signatures.

Methodology

• We use the QKD simulator from Pedone et al. (2021). This

simulator has implemented the BB84 protocol by using Qiskit.

Network communication is realised by Docker Compose. This

simulator has implemented both the AES-GCM authentication

(via cryptography with OpenSSL backend) and the post-

quantum authentication with an old version of SPHINCS+ (via

pyspx). PSK are stored on a database server, and the public

keys of SPHINCS+ are stored on the QKD nodes locally (PKI

is not implemented). Error correction and privacy amplification

are also not implemented in this simulator.

• We update pyspx to the NIST standardised version, and add

Dilithium and Falcon signatures to the simulator. Since the sim-

ulator is implemented in Python, the post-quantum signatures

(including pyspx) use their corresponding reference C imple-

mentations as backends with Python bindings. Public keys of

Dilithium and Falcon are also stored on QKD nodes locally.

• We adapt similar benchmark methodology to Pedone et al.

(2021) in order to measure the key rate. We use a simple net-

work with two peer-to-peer QKD nodes and no eavesdroppers.

5 qubits are used in the BB84 protocol, which gives the best

key rate in the simulation (Pedone et al., 2021). A QKD man-

ager sets the authentication method and triggers key exchanges

between two QKD nodes with different key lengths. For each

combination, we measure the average elapsed time of 100 key

exchanges on Intel Xeon E5-2660 v2 at 2.2 GHz (without AVX2

and AES-NI) and compute the key rate.

Results
The QKD key rates with different authentication methods and

key lengths are shown in Figure 1. In addition, for the same key

length, the achieved percentage of key rates with post-quantum

authentications compared to AES-GCM is shown in Table 2.

Figure 1: Key rates with different authentication methods.

128 256 512 1024 2048 4096

Dilithium2 111% 98% 104% 90% 100% 100%

Falcon-512 119% 105% 91% 99% 100% 105%

SPHINCS+

-SHAKE-128f
81% 79% 77% 81% 88% 92%

Table 2: Key Rates Compared to QKD with AES-GCM.

Discussions

• QKD with either Dilithium or Falcon consistently achieves

higher key rates compared to SPHINCS+. This is not sur-

prising, given the benchmark results in Table 1.

• The overhead of Dilithium and Falcon compared to AES-

GCM is ≤2% in most cases (≤10% in all cases), while

the overhead of SPHINCS+ is typically >10% (≥8% in

all cases).

• QKD with Falcon achieves higher key rates than Dilithium

in most cases, due to its smaller signature size and faster

speed.


